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CHAPTER 1

Investigating Causal Relations by
Econometric Models and Cross-Spectral
Methods*
C. W. J. Granger

There occurs on some occasions a difficulty in deciding the direction 
of causality between two related variables and also whether or not 
feedback is occurring. Testable definitions of causality and feedback are
proposed and illustrated by use of simple two-variable models. The
important problem of apparent instantaneous causality is discussed and
it is suggested that the problem often arises due to slowness in record-
ing information or because a sufficiently wide class of possible causal
variables has not been used. It can be shown that the cross spectrum
between two variables can be decomposed into two parts, each relating
to a single causal arm of a feedback situation. Measures of causal lag and
causal strength can then be constructed. A generalization of this result
with the partial cross spectrum is suggested.

The object of this paper is to throw light on the relationships between
certain classes of econometric models involving feedback and the func-
tions arising in spectral analysis, particularly the cross spectrum and the
partial cross spectrum. Causality and feedback are here defined in an
explicit and testable fashion. It is shown that in the two-variable case the
feedback mechanism can be broken down into two causal relations and
that the cross spectrum can be considered as the sum of two cross
spectra, each closely connected with one of the causations.The next three
sections of the paper briefly introduce those aspects of spectral methods,
model building, and causality which are required later. Section IV pre-
sents the results for the two-variable case and Section V generalizes these
results for three variables.

* Econometrica, 37, 1969, 424–438. Reprinted in Rational Expectations, edited by T. Sargent
and R. Lucas, 1981, University of Minnesota Press.



I. SPECTRAL METHODS

If Xt is a stationary time series with mean zero, there are two basic 
spectral representations associated with the series: (i) the Cramer 
representation,

(1)

where zx (w) is a complex random process with uncorrelated increments
so that

(2)

(ii) the spectral representation of the covariance sequence

(3)

If Xt has no strictly periodic components, dFx(w) = fx(w)dw, where
fx(w) is the power spectrum of Xt. The estimation and interpretation of
power spectra have been discussed in Granger and Hatanaka (1964) and
Nerlove (1964). The basic idea underlying the two spectral representa-
tions is that the series can be decomposed as a sum (i.e., integral) of
uncorrelated components, each associated with a particular frequency. It
follows that the variance of the series is equal to the sum of the vari-
ances of the components. The power spectrum records the variances of
the components as a function of their frequencies and indicates the 
relative importance of the components in terms of their contribution to
the overall variance.

If Xt and Yt are a pair of stationary time series, so that Yt has the 
spectrum fy(w) and Cramer representation

then the cross spectrum (strictly power cross spectrum) Cr(w) between
Xt and Yt is a complex function of w and arises both from

and

It follows that the relationship between two series can be expressed
only in terms of the relationships between corresponding frequency 
components.

Two further functions are defined from the cross spectrum as being
more useful for interpreting relationships between variables: (i) the
coherence,
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which is essentially the square of the correlation coefficient between 
corresponding frequency components of Xt and Yt, and (ii) the phase,

which measures the phase difference between corresponding frequency
components. When one variable is leading the other, f(w)/w measure the
extent of the time lag.

Thus, the coherence is used to measure the degree to which two series
are related and the phase may be interpreted in terms of time lags.

Estimation and interpretation of the coherence and phase function
are discussed in Granger and Hatanaka (1964, chaps. 5 and 6). It is worth
noting that f(w) has been found to be robust under changes in the 
stationarity assumption (Granger and Hatanaka 1964, chap. 9).

If Xt, Yt, and Zt are three time series, the problem of possibly mis-
leading correlation and coherence values between two of them due to
the influence on both of the third variable can be overcome by the use
of partial cross-spectral methods.

The spectral, cross-spectral matrix [ fij(w)] = S(w) between the three
variables is given by

where

etc.
The partial spectral, cross-spectral matrix between Xt and Yt given Zt

is found by partitioning S(w) into components:

.

The partitioning lines are between the second and third rows, and second
and third columns. The partial spectral matrix is then

Interpretation of the components of this matrix is similar to that
involving partial correlation coefficients. Thus, the partial cross spectrum
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can be used to find the relationship between two series once the 
effect of a third series has been taken into account. The partial coher-
ence and phase are defined directly from the partial cross spectrum 
as before. Interpretation of all of these functions and generalizations 
to the n-variable case can be found in Granger and Hatanaka (1964,
chap. 5).

II. FEEDBACK MODELS

Consider initially a stationary random vector Xt = {X1t, X2t, . . . , Xkt}, each
component of which has zero mean. A linear model for such a vector
consists of a set of linear equations by which all or a subset of the com-
ponents of Xt are “explained” in terms of present and past values of com-
ponents of Xt. The part not explained by the model may be taken to
consist of a white-noise random vector et, such that

(4)

where I is a unit matrix and 0 is a zero matrix.
Thus, the model may be written as

(5)

where m may be infinite and the A’s are matrices.
The completely general model as defined does not have unique 

matrices Aj as an orthogonal transformation. Yt = LXt can be performed
which leaves the form of the model the same, where L is the orthogonal
matrix, i.e., a square matrix having the property LL¢ = I. This is seen to
be the case as ht = Let is still a white-noise vector. For the model to be
determined, sufficient a priori knowledge is required about the values 
of the coefficients of at least one of the A’s, in order for constraints to
be set up so that such transformations are not possible. This is the so-
called identification problem of classical econometrics. In the absence of
such a priori constraints, L can always be chosen so that the A0 is a 
triangular matrix, although not uniquely, thus giving a spurious causal-
chain appearance to the model.

Models for which A0 has nonvanishing terms off the main diagonal
will be called “models with instantaneous causality.” Models for which
A0 has no nonzero term off the main diagonal will be called “simple
causal models.” These names will be explained later. Simple causal
models are uniquely determined if orthogonal transforms such as L are
not possible without changing the basic form of the model. It is possible
for a model apparently having instantaneous causality to be transformed
using an orthogonal L to a simple causal model.
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These definitions can be illustrated simply in the two variable case.
Suppose the variables are Xt, Yt. Then the model considered is of the
form

(6)

If b0 = c0 = 0, then this will be a simple causal model. Otherwise it will
be a model with instantaneous causality.

Whether or not a model involving some group of economic variables
can be a simple causal model depends on what one considers to be the
speed with which information flows through the economy and also on
the sampling period of the data used. It might be true that when quar-
terly data are used, for example, a simple causal model is not sufficient
to explain the relationships between the variables, while for monthly 
data a simple causal model would be all that is required. Thus, some 
nonsimple causal models may be constructed not because of the basic
properties of the economy being studied but because of the data being
used. It has been shown elsewhere (Granger 1963; Granger and
Hatanaka 1964, chap. 7) that a simple causal mechanism can appear to
be a feedback mechanism if the sampling period for the data is so long
that details of causality cannot be picked out.

III. CAUSALITY

Cross-spectral methods provide a useful way of describing the relation-
ship between two (or more) variables when one is causing the other(s).
In many realistic economic situations, however, one suspects that feed-
back is occurring. In these situations the coherence and phase diagrams
become difficult or impossible to interpret, particularly the phase
diagram. The problem is how to devise definitions of causality and feed-
back which permits tests for their existence. Such a definition was pro-
posed in earlier papers (Granger 1963; Granger and Hatanaka 1964,
chap. 7). In this section, some of these definitions will be discussed and
extended. Although later sections of this paper will use this definition of
causality they will not completely depend upon it. Previous papers con-
cerned with causality in economic systems (Basman 1963; Orcutt 1952;
Simon 1953; Strotz and Wold 1960) have been particularly concerned
with the problem of determining a causal interpretation of simultaneous
equation systems, usually with instantaneous causality. Feedback is 
not explicitly discussed. This earlier work has concentrated on the form
that the parameters of the equations should take in order to discern 
definite causal relationships. The stochastic elements and the natural
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time ordering of the variables play relatively minor roles in the theory.
In the alternative theory to be discussed here, the stochastic nature of
the variables and the direction of the flow of time will be central fea-
tures. The theory is, in fact, not relevant for nonstochastic variables and
will rely entirely on the assumption that the future cannot cause the past.
This theory will not, of course, be contradictory to previous work but
there appears to be little common ground. Its origins may be found in
suggestion by Wiener (1956).The relationship between the definition dis-
cussed here and work of Good (1962) has yet to be determined.

If At is a stationary stochastic process, let A
–

t represent the set of 
past values {At-j, j = 1, 2, . . . , •} and A

=
t represent the set of past and

present values {At-j, j = 0, 1, . . . , •}. Further let A(k) represent the set
{At-j, j = k, k + 1, . . . , •}.

Denote the optimum, unbiased, least-squares predictor of At using the
set of values Bt by Pt(AΩB). Thus, for instance, Pt(XΩX

–
) will be the

optimum predictor of Xt using only past Xt. The predictive error series
will be denoted by et(AΩB) = At - Pt(AΩB). Let s 2(AΩB) be the vari-
ance of et(AΩB).

The initial definitions of causality, feedback, and so forth, will be very
general in nature. Testable forms will be introduced later. Let Ut be all
the information in the universe accumulated since time t - 1 and let 
Ut - Yt denote all this information apart from the specified series Yt.
We then have the following definitions.

Definition 1: Causality. If s 2(XΩU) < s 2(XΩ ), we say that Y is
causing X, denoted by Yt fi Xt. We say that Yt is causing Xt if we are
better able to predict Xt using all available information than if the infor-
mation apart from Yt had been used.

Definition 2: Feedback. If s 2(XΩU
–

) < s 2(XΩ ), and s 2(YΩU
–

) <
s 2(YΩ ), we say that feedback is occurring, which is denoted 
Yt ¤ Xt, i.e., feedback is said to occur when Xt is causing Yt and also Yt

is causing Xt.

Definition 3: Instantaneous Causality. If s 2(XΩU
–

, Y
=

) < s 2(XΩU
–

), we
say that instantaneous causality Yt fi Xt is occurring. In other words, the
current value of Xt is better “predicted” if the present value of Yt is
included in the “prediction” than if it is not.

Definition 4: Causality Lag. If Yt fi Xt, we define the (integer) 
causality lag m to be the least value of k such that s 2[XΩU - Y(k)] <
s 2[XΩU - Y(k + 1)]. Thus, knowing the values Yt-j, j = 0, 1, . . . , m - 1,
will be of no help in improving the prediction of Xt.

The definitions have assumed that only stationary series are involved.
In the nonstationary case, s(XΩU

–
) etc. will depend on time t and, in

U X-
U Y-

U Y-
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general, the existence of causality may alter over time. The definitions
can clearly be generalized to be operative for a specified time t. One
could then talk of causality existing at this moment of time. Considering
nonstationary series, however, takes us further away from testable defi-
nitions and this tack will not be discussed further.

The one completely unreal aspect of the above definitions is the use
of the series Ut, representing all available information. The large major-
ity of the information in the universe will be quite irrelevant, i.e., will
have no causal consequence. Suppose that all relevant information is
numerical in nature and belongs to the vector set of time series Yt

D =
{Yi

t, i Œ D} for some integer set D. Denote the set {i Œ D, i π j} by D( j)
and {Y i

j , i Œ D( j)} by Yt
D ( j), i.e., the full set of relevant information except

one particular series. Similarly, we could leave out more than one series
with the obvious notation. The previous definitions can now be used but
with Ut replaced by Yt and Ut - Yt by YD( j). Thus, for example, suppose
that the vector set consists only of two series, Xt and Yt, and that all other
information is irrelevant. Then s 2(XΩX

–
) represents the minimum pre-

dictive error variance of Xt using only past Xt and s 2(XΩX
–

, Y
–

) repre-
sents this minimum variance if both past Xt and past Yt are used to
predict Xt. Then Yt is said to cause Xt if s 2(XΩX

–
) > s 2(XΩX

–
, Y

–
). The

definition of causality is now relative to the set D. If relevant data has
not been included in this set, then spurious causality could arise. For
instance, if the set D was taken to consist only of the two series Xt and
Yt, but in fact there was a third series Zt which was causing both within
the enlarged set D¢ = (Xt, Yt, Zt), then for the original set D, spurious
causality between Xt and Yt may be found.This is similar to spurious cor-
relation and partial correlation between sets of data that arise when
some other statistical variable of importance has not been included.

In practice it will not usually be possible to use completely optimum
predictors, unless all sets of series are assumed to be normally dis-
tributed, since such optimum predictors may be nonlinear in complicated
ways. It seems natural to use only linear predictors and the above defi-
nitions may again be used under this assumption of linearity. Thus, for
instance, the best linear predictor of Xt using only past Xt and past Yt will
be of the form

where the aj’s and bj’s are chosen to minimize s 2(XΩX
–

, Y
–

).
It can be argued that the variance is not the proper criterion to use

to measure the closeness of a predictor Pt to the true value Xt. Certainly
if some other criteria where used it may be possible to reach different
conclusions about whether one series is causing another. The variance
does seem to be a natural criterion to use in connection with linear pre-
dictors as it is mathematically easy to handle and simple to interpret. If
one uses this criterion, a better name might be “causality in mean.”

P X X Y a X b Yt j t j
j

j t j
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The original definition of causality has now been restricted in order
to reach a form which can be tested.Whenever the word causality is used
in later sections it will be taken to mean “linear causality in mean with
respect to a specified set D.”

It is possible to extend the definitions to the case where a subset of
series D* of D is considered to cause Xt. This would be the case if
s 2(XΩYD) < s 2(XΩYD-D*) and then YD* fi Xt. Thus, for instance, one
could ask if past Xt is causing present Xt. Because new concepts are nec-
essary in the consideration of such problems, they will not be discussed
here in any detail.

It has been pointed out already (Granger 1963) that instantaneous
causality, in which knowledge of the current value of a series helps in
predicting the current value of a second series, can occasionally arise 
spuriously in certain cases. Suppose Yt fi Xt with lag one unit but that
the series are sampled every two time units. Then although there is no
real instantaneous causality, the definitions will appear to suggest that
such causality is occurring. This is because certain relevant information,
the missing readings in the data, has not been used. Due to this effect,
one might suggest that in many economic situations an apparent 
instantaneous causality would disappear if the economic variables were
recorded at more frequent time intervals.

The definition of causality used above is based entirely on the pre-
dictability of some series, say Xt. If some other series Yt contains infor-
mation in past terms that helps in the prediction of Xt and if this
information is contained in no other series used in the predictor, then Yt

is said to cause Xt. The flow of time clearly plays a central role in these
definitions. In the author’s opinion there is little use in the practice 
of attempting to discuss causality without introducing time, although
philosophers have tried to do so. It also follows from the definitions that
a purely deterministic series, that is, a series which can be predicted
exactly from its past terms such as a nonstochastic series, cannot be said
to have any causal influences other than its own past. This may seem to
be contrary to common sense in certain special cases but it is difficult to
find a testable alternative definition which could include the determinis-
tic situation. Thus, for instance, if Xt = bt and Yt = c(t + 1), then Xt can be
predicted exactly by b + Xt-1 or by (b/c)Yt-1. There seems to be no way
of deciding if Yt is a causal factor of Xt or not. In some cases the nota-
tion of the “simplest rule” might be applied. For example, if Xt is some
complicated polynomial in t and Yt = Xt+1, then it will be easier to predict
Xt from Yt-1 than from past Xt. In some cases this rule cannot be used,
as the previous example showed. In any case, experience does not indi-
cate that one should expect economic laws to be simple in nature.

Even for stochastic series, the definitions introduced above may give
apparently silly answers. Suppose Xt = At-1 + et, Yt = At + ht, and Zt = At

+ gt, where et, ht, and gt are all uncorrelated white-noise series with equal

38 C. W. J. Granger



variances and At is some stationary series. Within the set D = (Xt, Yt) the
definition gives Yt fi Xt. Within the set D¢ = (Xt, Yt), it gives Zt fi Xt. But
within the set D≤ = (Xt, Yt, Zt), neither Yt nor Zt causes Xt, although the
sum of Yt and Zt would do so. How is one to decide if either Yt or Zt is
a causal series for Xt? The answer, of course, is that neither is. The causal
series is At and both Yt and Zt contain equal amounts of information
about At. If the set of series within which causality was discussed was
expanded to include At, then the above apparent paradox vanishes. It
will often be found that constructed examples which seem to produce
results contrary to common sense can be resolved by widening the set
of data within which causality is defined.

IV. TWO-VARIABLE MODELS

In this section, the definitions introduced above will be illustrated using
two-variable models and results will be proved concerning the form of
the cross spectrum for such models.

Let Xt, Yt be two stationary time series with zero means. The simple
causal model is

(7)

where et, ht are taken to be two uncorrelated white-noise series, i.e.,
E[etes] = 0 = E[hths], s π t, and E[etes] = 0 all t, s. In (7) m can equal 
infinity but in practice, of course, due to the finite length of the available
data, m will be assumed finite and shorter than the given time series.

The definition of causality given above implies that Yt is causing Xt

provided some bj is not zero. Similarly Xt is causing Yt if some cj is not
zero. If both of these events occur, there is said to be a feedback rela-
tionship between Xt and Yt. It will be shown later that this new defini-
tion of causality is in fact identical to that introduced previously.

The more general model with instantaneous causality is

(8)

If the variables are such that this kind of representation is needed,
then instantaneous causality is occuring and a knowledge of Yt will
improve the “prediction” or goodness of fit of the first equation for Xt.

Consider initially the simple causal model (7). In terms of the time
shift operator U, that is, UXt = Xt-1, these equations may be written
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(9)

where a(U), b(U), c(U), and d(U) are power series in U with the coeffi-
cient of U0 zero, i.e., a(U) = Sm

j=1ajUj, etc.
Using the Cramer representations of the series, i.e.,

and similarly for et and ht, expressions such as a(U)Xt can be written as

Thus, equations (9) may be written

from which it follows that

(10)

where

and where a is written for a(e-iw), etc., and dZx for dZx(w), etc.
Thus, provided the inverse of A exists,

(11)

As the spectral, cross-spectral matrix for Xt, Yt is directly obtainable
from

these functions can quickly be found from (11) using the known prop-
erties of dZe and dZh. One finds that the power spectra are given by

(12)

where D = Ω(1 - a)(1 - d) - bcΩ2. Of more interest is the cross spectrum
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Thus, the cross spectrum may be written as the sum of two 
components

(13)

where

and

If Yt is not causing Xt, then b ∫ 0 and so C2(w) vanishes. Similarly if
Xt is not causing Yt then c ∫ 0 and so C1(w) vanishes. It is thus clear that
the cross spectrum can be decomposed into the sum of two components
– one which depends upon the causality of X by Y and the other on the
causality of Y by X.

If, for example, Y is not causing X so that C2(w) vanishes, the Cr(w)
= C1(w) and the resulting coherence and phase diagrams will be inter-
preted in the usual manner.This suggests that in general C1(w) and C2(w)
can each be treated separately as cross spectra connected with the two
arms of the feedback mechanism. Thus, coherence and phase diagrams
can be defined for X fi Y and Y fi X. For example,
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Y plotted against frequency and is a direct generalization of coherence.
We call (w) the causality coherence.

Further,
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Such formulae merely illustrate how difficult it is to interpret econo-
metric models in terms of frequency decompositions. It should be noted
that 0 < Ω (w)Ω < 1 and similarly for (w).

As an illustration of these definitions, we consider the simple feed-
back system

(14)

where s 2
e = s 2

h = 1.
In this case a(w) = 0, b(w) = be-iw, c(w) = ce-2iw, and d(w) = 0.The spectra

of the series {Xt}, {Yt} are

and

and thus are of similar shape.
The usual coherence and phase diagrams derived from the cross spec-

trum between these two series are

and

These diagrams are clearly of little use in characterizing the feedback
relationship between the two series.
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Other particular cases are also found to give correct results. If, for
example, we again consider the same simple model (14) but with s 2

e = 1,
s 2

h = 0, i.e., ht ∫ 0 for all t, then one finds (w) = 1, (w) = 0, i.e., X is
“perfectly” causing Y and Y is not causing X, as is in fact the case.

If one now considers the model (8) in which instantaneous causality
is allowed, it is found that the cross spectrum is given by

(15)

where D¢ = Ω(1 - a)(1 - d) - (b - b0)(c - c0)Ω2. Thus, once more, the cross
spectrum can be considered as the sum of two components, each of which
can be associated with a “causality,” provided that this includes instan-
taneous causality. It is, however, probably more sensible to decompose
Cr(w) into three parts, Cr(w) = C1(w) + C2(w) + C3(w), where C1(w) and
C2(w) are as in (13) but with D replaced by D¢ and

(16)

representing the influence of the instantaneous causality.
Such a decomposition may be useful but it is clear that when instan-

taneous causality occurs, the measures of causal strength and phase lag
will lose their meaning.

It was noted in Section II that instantaneous causality models such as
(8) in general lack uniqueness of their parameters, as an orthogonal
transformation L applied to the variables leaves the general form of the
model unaltered. It is interesting to note that such transformations do
not have any effect on the cross spectrum given by (15) or the decom-
position. This can be seen by noting that equations (8) lead to
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methods are more robust in their interpretation than are simultaneous
equation models.

Returning to the simple causal model (9),

throughout this section it has been stated that Yt fi/ Xt if b ∫ 0. On intui-
tive grounds this seems to fit the definition of no causality introduced in
Section III, within the set D of series consisting only of Xt and Yt. If b ∫
0 then Xt is determined from the first equation and the minimum vari-
ance of the predictive error of Xt using past Xt will be s 2

e . This variance
cannot be reduced using past Yt. It is perhaps worthwhile proving this
result formally. In the general case, it is clear that s 2(XΩX

–
, Y
–

) = s 2
e , i.e.,

the variance of the predictive error of Xt, if both past Xt and past Yt are
used, will be s 2

e from the top equation. If only past Xt is used to predict
Xt, it is a well known result that the minimum variance of the predictive
error is given by

(17)

It was shown above in equation (12) that

where D = Ω(1 - a)(1 - d) - bcΩ2. To simplify this equation, we not that

by symmetry. Thus if,
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) = a0. For there to be no causality, we must have a0 = s 2
e . It

is clear from the form of fx(w) that in general this could only occur if ΩbΩ ∫
0, in which case 2p fx(w) = s 2

e /Ω1 - aΩ2 and the required result follows.

V. THREE-VARIABLE MODELS

The above results can be generalized to the many-variables situation, but
the only case which will be considered is that involving three variables.
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where a1(U), etc., are polynomials in U, the shift operator, with the 
coefficient of U 0 zero. As before, ei,t, i = 1, 2, 3, are uncorrelated, white-
noise series and denote the variance ei,t = s 2

i .
Let a = a1 - 1, b - b2 = 1, g = c3 - 1, and

where b1 = b1(e-iw), etc., as before. Using the same method as before, the
spectral, cross-spectral matrix S(w) is found to be given by S(w) =
A-1k(A¢)-1 where

One finds, for instance, that the power spectrum of Xt is

where D is the determinant of A.
The cross spectrum between Xt and Yt is

Thus, this cross spectrum is the sum of three components, but it is not
clear that these can be directly linked with causalities. More useful results
arise, however, when partial cross spectra are considered. After some
algebraic manipulation it is found that, for instance, the partial cross
spectrum between Xt and Yt given Zt is

where

Thus, the partial cross spectrum is the sum of three components
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These can be linked with causalities. The component C 1
xy,z(w) represents

the interrelationships of Xt and Yt through Zt, and the other two com-
ponents are direct generalizations of the two causal cross spectra which
arose in the two-variable case and can be interpreted accordingly.

In a similar manner one finds that the power spectrum of Xt, given 
Zt is

The causal and feedback relationship between Xt and Yt can be 
investigated in terms of the coherence and phase diagrams derived from
the second and third components of the partial cross spectrum, i.e.,

VI. CONCLUSION

The fact that a feedback mechanism may be considered as the sum of
two causal mechanisms, and that these causalities can be studied by
decomposing cross or partial cross spectra suggests methods whereby
such mechanisms can be investigated. I hope to discuss the problem of
estimating the causal cross spectra in a later publication. There are a
number of possible approaches, and accumulated experience is needed
to indicate which is best. Most of these approaches are via the model-
building method by which the above results were obtained. It is worth
investigating, however, whether a direct method of estimating the com-
ponents of the cross spectrum can be found.
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